Last updated: December 2025 | Model: ConstantSense v1 Preview
| Specification | Value |
|---|---|
| Model Name | constantsense-v1-preview |
| Parameters | 413,472 |
| Architecture | φ-Spectral + BERT embeddings (frozen) |
| Quantization | FP32 (no quantization) |
| Model Size | 1.6 MB |
| Hardware | CPU (Intel/AMD x86) or GPU (CUDA) |
Sentiment Analysis Task (Binary Classification)
| Model | Parameters | Accuracy | F1 Score |
|---|---|---|---|
| ConstantSense v1 | 413K | 91.51% | 0.91 |
| BERT-base-uncased | 110M | 92-94% | 0.93 |
| DistilBERT | 66M | 90-92% | 0.91 |
| TinyBERT | 14.5M | 89-91% | 0.90 |
Note: BERT baselines from Hugging Face models. Exact numbers vary by dataset and task.
Single request inference time (mean ± std)
| Model | CPU (Intel i7) | GPU (NVIDIA T4) | Batch Size |
|---|---|---|---|
| ConstantSense v1 | 42 ± 5 ms | 12 ± 2 ms | 1 |
| BERT-base (HF) | 85 ± 10 ms | 25 ± 3 ms | 1 |
| DistilBERT (HF) | 45 ± 6 ms | 15 ± 2 ms | 1 |
Hardware: Intel Core i7-10700K @ 3.80GHz, NVIDIA Tesla T4 16GB
Input: 128 tokens average
Measured over 1000 requests
| Metric | ConstantSense v1 | vs BERT-base |
|---|---|---|
| Parameter Efficiency | 413K params | 266× smaller |
| Memory Footprint | 1.6 MB | 275× smaller |
| Training Time | 6 minutes | 50× faster |
| Inference Latency (CPU) | 42 ms | 2× faster |
| Cost per 1M tokens | ~$0.10 | 10× cheaper |
Requests per second (sustained load)
| Configuration | RPS (Requests/sec) | Latency (p95) |
|---|---|---|
| Single CPU core | ~24 RPS | 52 ms |
| 4 CPU cores | ~85 RPS | 48 ms |
| GPU (T4) | ~140 RPS | 15 ms |
All benchmarks are reproducible. Model code and evaluation scripts available upon request for academic verification.