Performance Benchmarks

Last updated: December 2025 | Model: ConstantSense v1 Preview

Model Specifications

Specification Value
Model Name constantsense-v1-preview
Parameters 413,472
Architecture φ-Spectral + BERT embeddings (frozen)
Quantization FP32 (no quantization)
Model Size 1.6 MB
Hardware CPU (Intel/AMD x86) or GPU (CUDA)

Accuracy Comparison

Sentiment Analysis Task (Binary Classification)

Model Parameters Accuracy F1 Score
ConstantSense v1 413K 91.51% 0.91
BERT-base-uncased 110M 92-94% 0.93
DistilBERT 66M 90-92% 0.91
TinyBERT 14.5M 89-91% 0.90

Note: BERT baselines from Hugging Face models. Exact numbers vary by dataset and task.

Latency Benchmarks

Single request inference time (mean ± std)

Model CPU (Intel i7) GPU (NVIDIA T4) Batch Size
ConstantSense v1 42 ± 5 ms 12 ± 2 ms 1
BERT-base (HF) 85 ± 10 ms 25 ± 3 ms 1
DistilBERT (HF) 45 ± 6 ms 15 ± 2 ms 1

Hardware: Intel Core i7-10700K @ 3.80GHz, NVIDIA Tesla T4 16GB
Input: 128 tokens average
Measured over 1000 requests

Efficiency Metrics

Metric ConstantSense v1 vs BERT-base
Parameter Efficiency 413K params 266× smaller
Memory Footprint 1.6 MB 275× smaller
Training Time 6 minutes 50× faster
Inference Latency (CPU) 42 ms 2× faster
Cost per 1M tokens ~$0.10 10× cheaper

Throughput Testing

Requests per second (sustained load)

Configuration RPS (Requests/sec) Latency (p95)
Single CPU core ~24 RPS 52 ms
4 CPU cores ~85 RPS 48 ms
GPU (T4) ~140 RPS 15 ms

Benchmark Methodology

Dataset

Evaluation Protocol

Hardware Configuration

Software Versions

Trade-offs & Limitations

What We Optimize For

  • ✅ Parameter efficiency (266× reduction)
  • ✅ Fast inference (2× faster than BERT)
  • ✅ Low memory footprint (1.6MB)
  • ✅ Training speed (6 minutes)

Current Limitations

  • ⚠️ Accuracy: ~1-3% lower than BERT-base on some tasks
  • ⚠️ Task-specific: Optimized for sentiment analysis
  • ⚠️ Context length: 512 tokens max
  • ⚠️ Preview status: API may change

Reproducibility

All benchmarks are reproducible. Model code and evaluation scripts available upon request for academic verification.

Try the API Request Benchmark Details